
 

 
 

Team 5 (Delta V Innovation Database Team) 
Database Coding Assignment 

11/12/18 
 

      Team Members: 
          Austin Rice 
      Matthew Stipsits 
       Daniel Palmer 

 
 

Customer: 
          Mike Flamm 

     deltaVinnovationsinc@gmail.com 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1. Implementation 

1.a Source Code Listing 
Each team on the Delta V Innovations projects shares a github repository for code 

storage and access. Our group looks and edits code very minimally, but the link to the github 

page is  

https://github.com/mfp426/SeniorDesign499 

 

As for our database host, we are using Amazon Web server where we have a single 

database instance that is allotted 20 Gigabytes of storage. Inserting and accessing data can be 

done on mySQL or HeidiSQL. 

 
1.a.1 Quality Review 

There were a few checklists that our group referenced in order to make sure the 

database we are working on met certain standards. Ncsu.edu was a great website that ran 

through all the basics on database management. It is really good for tips on preserving and 

maintaining your database and giving tips on the standards that any database should meet. 

Along with that website, we used scribd.com’s database design review checklist to help 

enhance our database. This checklist was more in depth and provided a lot of minor details that 

helped improve the database we are working on. 

 
1.b User Manual 

The user manual is a OneNote file that can be found on the team website. Due to the 

fact that our team was working with a database and not creating a product, our user guide is 

different than other teams. It is very important in helping future Delta V teams understand how 

the database can be accessed and how it works.  

 
1.c Administrators Manual 

The mobile app is available on the Apple App Store and Google Play Store. It is called 

“Delta V Field Lite”. Internet access is required for use. A user does not need to login in order to 

use the app at this time.  

https://github.com/mfp426/SeniorDesign499


 

2. Testing 

2.a Test Plan 
Over the span of the last few weeks, plenty of precautionary measures and a lot of 

testing has been done to ensure our methods are correct, and the database is serving its 

purpose. When creating and maintaining a database, it is important to create structural tests, 

functional tests, and nonfunctional tests. 

The structural database tests deal with table and column testing, schema testing, stored 

procedures and views testing. These kind of tests typically involve the elements inside the data 

repositories and also the storage of data elements. This kind of testing was done the most since 

the database is still in its early stages.  

Functional tests were also important and used frequently. This kind of testing ensures 

that the actions performed by the end users is consistent and lines up with the desired output. 

The nonfunctional tests are the type that test the integrity and optimize the current database. 

When completing this project, it is important to include a mixture of all these kinds of testing 

methods so that the database has no potential holes or security risks. 

 
 
 
2.b Test Cases and Results 
 
Test Case ID: 1 

Test Priority: High 

Module Name: Testing the correctness of “Vehicle Lookup” module of the mobile app  

Test Designer: Austin Rice 

Test Produced On: September 29, 2018 

Summary: This test will test to make sure that when a user enters a year, make, and model of a 

vehicle into the mobile app the proper data is returned from the database to the user. 

Test Steps: 

1. Open up the “Vehicle Lookup” module on the mobile app. 

2. Enter a proper year and model into the fields and hit search. 

3. Choose one of the models and hit next. 

4. Choose a trim and hit get vehicle info. 



5. Verify that data was pull back and is listed on the screen. This data should include Model 

Weight, Model Length, Model Height, Model Wheelbase, Model Drive, Top Speed, and 0 

to 60 mph.  

Result: Success. Current data is pulled back correctly and there is no discrepancies with the 

presented data. Current tables have not been brought to the applications GUI yet, so that 

testing is yet to happen. Same process of testing will occur once the GUI is updated. 

 

Test Case ID: 2 

Test Priority: Moderate 

Module Name: Data Type and Size Verification 

Test Designer: Daniel Palmer 

Test Produced On: October 20, 2018 

Summary: Each attributes type and size must correspond to its value and not exceed its limits 

Test Steps: We must check the size and type of the attributes and data when: 

1. We create a new table or attribute. 

2. We add data into the database. 

Result: We created the new table Vehicle_Specs_Additional, and in it we have 18 attributes. All 

attributes are given the type, varchar, as that is what the previous semester had done to most of 

their tables. The length was set to a default value of 45, which the previous semesters group 

also did with their tables. When inputting data, we made sure that the roughly 22,000 entries 

were within these limits, and correlated with the given type.  

 

Test Case ID: 3 

Test Priority: Moderate 

Module Name: Bad Data Inputs 

Test Designer: Daniel Palmer 

Test Produced On: October 20, 2018 

Summary: Every database needs to be able to handle bad data entries and respond in an 

appropriate manner. 

Test Steps:  

1. Insert improper data types and sizes to see how the software and database handle it. 

2. Determine a template each file should look like that gets imported into the database so 

that the process is easier. 



Result: We created the new table Vehicle_Specs_Additional, and in it we have 18 attributes. All 

attributes are given the type, varchar, as that is what the previous semester had done to most of 

their tables. The length was set to a default value of 45, which the previous semesters group 

also did with their tables. When inputting data, we made sure that the roughly 22,000 entries 

were within these limits, and correlated with the given type. As for error handling, given the file 

has more data than the database accepts, HeidiSQL’s software is able to handle that by parsing 

excessive lines of data. Each file that was imported into the database was through HeidiSQL, 

and followed the format given in the current database. 

 

Test Case ID: 4 

Test Priority: Low 

Module Name: Data Mapping 

Test Designer: Daniel Palmer 

Test Produced On: October 15, 2018 

Summary: Whenever the user submits a form on the application UI, it triggers a CRUD 

(Create/Retrieve/Update/Delete) event at the backend. 

Test Steps:  

1. User populates field with credentials or vehicle information. 

2. Backend verifies that information and one of the following different actions will happen. 

3. If information has not been created, then it creates it.  

4. If information has already been created, then it updates previous information. 

5. If user needs information, then it retrieves it. 

Result: The user database tables are on low priority and not been created yet, and this is mainly 

where we would do this testing. Other areas could be when a user requests information about a 

certain car, and we have already verified that this works correctly. New tables that are created 

will need new php scripts, that should be able to be copies of other similar php scripts. Those 

scripts have yet to be created. 

 

Test Case ID: 5 

Test Priority: Low 

Module Name: NULL vs empty vs N/A data representation 

Test Designer: Daniel Palmer 

Test Produced On: October 22, 2018 



Summary: When given data values that are empty strings, there are many ways to express this 

value, and knowing how to handle them is very important. 

Test Steps: Upon creation of a new table, test the use of NULL vs N/A data representation to 

see which better suites the table we have created. 

Result: For the table we created, we decided on using N/A to represent empty data. We did not 

set a default value so that it would not default to null. Instead we will put N/A to represent a Null. 

Null values can be messy to use especially when trying to query something and using relational 

algebra to get certain values. 

 
2.b.1 Quality Review 

During the last few weeks, we have implemented a few more test cases that we thought 

would helped improve the database. Some of the test cases were created upon reviewing the 

checklist’s that we described in part 1.a.1. Other test cases were created as we started to 

complete our given project. The test cases act for the most part like a benchmark for our 

database. Each one relates to a project we have been doing throughout the semester, and this 

kind of testing allows us to see how we are progressing. After a test case is completed, we think 

of ways in which we can improve upon an idea, or create a new one, which leads to the creation 

of more test cases. 

 

3. Technical Metric Collection 

3.a Estimated Story Points 
To keep our project goals in mind we developed our user stories earlier in the 

semester to outline specifically what we want to accomplish. Our stories have been 
sorted into two categories, completed and upcoming. The total story points estimated is 
105. 
 
Completed - 60 SP 
Import more vehicle data into existing database tables - 20 
Add new tables into database aligned with what the mobile teams add to the app - 25 
Write queries in order to allow app access to database - 15 
 
Upcoming - 45 SP 
Allow user to add personal data - 25 
Database cleanup and maintenance - 10 
Communication with other teams and customer - 10 



 
3.b Actual Lines of Code 

As our team worked exclusively with the database, the only code we have written 
is the script for formatting the new data. We have one file, CS499_script.cpp with 627 
lines of code. 

 
3.c Complexity of Each Module 
Within the database, we exclusively worked with two tables throughout the semester: 
 
VEHICLE_SPECS: 12.5 MB (This table was already created at the start) 
VEHICLE_SPECS: 3.5 MB (This is the extra table we had to create and populate with 
the new data) 
 
3.d Overall Complexity 

The DeltaV Test Database has a total of 22 tables within totaling 16.4 MB. 
 

3.e Product Size 
We have a total of 6 user stories and 5 test cases. 

 
3.f Product Effort 

 
 Hours Word Count 

Daniel Palmer 25 4228 

Austin Rice 21 4015 

Matthew Stipsits 15 2497 

 
3.g Defects 

To accomplish our primary objective of populating our database tables with the 
relevant data on vehicle specs, our customer provided us with a collection of vehicle 
information from 1971 to 2019 collected by the Canadian Association of Road Safety 
Professionals. Our main conflict is that the format already created within the database 
differs from how all the vehicle specs gathered is formatted. We built a script to properly 
convert the data, however, there are still some discrepancies with vehicle make and 
models not matching in the database. 



 

4. Developers Notes 
Our team has a website through github to track the progress of our project. It contains all 

of the projects up to this point including information about the team member. The site can be 
found here: https://acri232.github.io/CS499Team5/ 
 
 

5. Demonstration 
The demonstration of our project was done in video form during our presentation to the 

class. 

 
References 
 
https://www.scribd.com/doc/10452236/Database-Design-Review-Checklist 
https://www.lib.ncsu.edu/sites/default/files/dmp_checklist_Resources_sept2014.pdf 
 

https://acri232.github.io/CS499Team5/
https://www.scribd.com/doc/10452236/Database-Design-Review-Checklist
https://www.lib.ncsu.edu/sites/default/files/dmp_checklist_Resources_sept2014.pdf

